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Abstract

We discuss our work using critical point analysis to generate representation of the three-dimensional
magnetic vector �eld topology of numerical magnetic vector data sets from TRISTAN code. Critical points
are magnetic nulls, and located and characterized in a three-dimensional domain. The magnetic vector
�eld curves and surfaces are integrated out along the principal directions of certain classes of critical points
including the earth dipole magnetic �eld. Both the curves and surfaces are the characteristic ones. All the
points, curves, and surfaces are uniquely linked to form a skeleton representing the tree-dimensional vector
�eld topology.

When generated from the magnetic vector �eld near the magnetophere in a three-dimensional magnetic
�eld, the skeleton includes the critical points, curves, and surfaces that provide a basis for understanding the
three{dimensional topological structure of the reconnection. Two critical points on the earth magnetosphere
that forms the three dimensional X points and the two connecting characteristic curves which do not have
the third eigenvector components are used to investigate the change of the topological structure in magnetic
reconnection.

1 Introduction
When computer graphics is introduced to a �eld of study, the visualization techniques to emerge �rsts are
the ones that most closely resemble the \pictures" already in use a familiar to those in the �eld. To the
researcher, who having seen thousands of them, has learned to interpret them, such images may be more
useful than a new representation that actually contains more information. However, direct visualization
methods in which thousands of points, vectors or curves are displayed are inadequate for visualizing many
complex data sets, and manually choosing a smaller set of elements for direct display is usually both time
consuming and error prone.

The importance of topology in understanding magnetospheric dynamics combined with the di�culty of
extracting topological magnetic �eld information with existing tools has motivated our e�orts. This paper
describes some of methods we have developed to automate the analysis and display of magnetic vector �eld
topology in the near earth, especially, magnetotail regions that considered to be one of the most important
part analyzing the space physics. We �rsts discuss the basis of critical point analysis and classi�cations, and
then discuss the algorithm of our visualization.

Topological concepts are very powerful because given the critical points in a magnetic vector �eld and
the magnetic �eld curves or surfaces connecting them, one can infer the shape of other magnetic �eld curves
or surfaces that are the topologically equivalent ones and hence to some extent the structure of the entire
magnetic vector �eld.

2 Critical Points
Critical points or magnetic nulls are those points at which the magnitude of the magnetic �eld vector
vanished. These points may be characterized according to the behavior of nearby magnetic �eld curves or
surfaces. The set of the curves or surfaces which end on critical points are of special interests because they
de�ne the behavior of the magnetic vector �eld in the neighborhood of the point. If all the eigenvalues of
critical points in the region we consider are hyperbolic, then the magnetic vector �eld topologies are uniquely
determined only by the critical points, the magnetic �eld curves, and surfaces that are originated from the
critical points [2]. The hyperbolic conditions are the case we are considering and this is the usual magnetic
vector �eld con�guration. Thus these particular sets of the critical points, curves, and surfaces can be used
to de�ne a skeleton that uniquely characterizes the magnetic vector �eld we are going to visualize.

For simplicity, we use v = (u; v;w)t instead of B = (Bx; By ; Bz)
t as the magnetic vector �eld. We �rst

Taylor expand the magnetic vector �eld v(x; y; z)t around the critical point x = (x0:y0; z0)
t to the �rst

order:

v =
dx

dt

=

 
u(x0; y0; z0)
v(x0; y0; z0)
w(x0; y0; z0)
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Here we know that

 
u(x0; y0; z0)
v(x0; y0; z0)
w(x0; y0; z0)
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Thus we get the linearized form of the magnetic vector �eld:

dx

dt
= Jx: (3)

Here to the �rst order approximation, a critical point can be classi�ed according to the eigenvalues of the
Jacobian matrix J of the vector v with respect to the critical point x:
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Figure 1 shows how the eigenvalues classify a critical point as an attracting node, a repelling node, an
attracting focus, a repelling focus, and a saddle. This can be understood by observing that a positive or
negative real part of an eigenvalue indicates an attracting or repelling nature, respectively. The imaginary
part denoted circulation about the critical points. Among these points, the saddle points are distinct in
that there are the characteristic magnetic � surfaces that are indicated in the �gures and are spanned by
the two eigenvectors that have the same sign of the real part of the eigenvalues. The outgoing or incoming
characteristic two lines span the � surfaces.

Figure 1: Classi�cation of critical points.

In our magnetic vector �eld unlike the electric vector �eld we have the solenoidal condition r �B = 0.
Thus the three eigenvalues of the critical point �1; �2; �3 have the condition �1+�2+�3 = 0. Now we know
that all the eigenvalues cannot be all positive or negative. We can only have the saddle points assuming that
all the critical points are hyperbolic in the region we are visualizing. This observation gives us the unique
global skeleton topology of the magnetic vector �eld.

3 Visualizing magnetic vector �eld topology in the earth
magnetotail

The primary purpose of our visualization work is to develop a technique that leads to the global topological
study of three-dimensional magnetic �eld reconnection. In this purpose, we studied the topology of the
TRISTAN particle simulation [1] with the south interplanetary magnetic �eld (IMF). Although the TRIS-
TAN code is the particle simulation and somehow noisy in the magnetic vector �eld data, we still be able
to see the global magnetic vector �eld topology including the earth dipole magnetic �eld. In the following,
we show the important magnetic �eld topology focusing on the two points 3 and 4 in Figs. 2 to 5. All the
critical points found in visualizing the magnetotail and the earth magnetic �eld region are hyperbolic except
the dipole. Thus it possible for us to determine the topology of the magnetic vector �eld in visualizing the
region including the earth magnetic dipole that is indicated as the square box in the left side of the Figs. 2
to 5.

In the �gures, the magnetic vector �eld curves are all characteristic ones that are starting from the
critical points in the eigenvector directions. All surfaces shown in the �gures are � surfaces, and are also
called the separation surfaces that are spanned by the two eigenvectors that have the same sign of the real
part of eigenvalues. The critical points 3 and 4 have the characteristic connections and connect to the sun
and the earth, respectively, via the characteristic magnetic vector �eld curves.
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Figure 2: Topology of critical point 3.

Figure 3: Topology of critical point 4.
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Figure 4: Whole topology in the magnetotail region including the earth magnetic dipole.

Figure 5: Complex three-dimensional X{point in the magnetotail and the earth magnetic �eld, which is the
connection among critical points 3 and 4, and the earth dipole �eld.
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